Semistar-operations of finite character on integral domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Cancellation Properties of Semistar Operations

If D is an integral domain with quotient field K, then let F̄(D) be the set of non-zero D-submodules of K, F(D) be the set of non-zero fractional ideals of D and f(D) be the set of non-zero finitely generated D-submodules of K. A semistar operation ? on D is called arithmetisch brauchbar (or a.b.) if, for every H ∈ f(D) and every H1, H2 ∈ F̄(D), (HH1) ? = (HH2) ? implies H 1 = H ? 2 , and ? is ca...

متن کامل

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

Local–global Properties for Semistar Operations

We study the “local” behavior of several relevant properties concerning semistar operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the “global” problem of building a new semistar operation on a given integral domain, by “gluing” a given homogeneous family of semistar operations defined on a set of localizations. We apply these results for studying the local–global beh...

متن کامل

The semistar operations on certain Prüfer domain, II

Let D be a 1-dimensional Prüfer domain with exactly two maximal ideals. We completely determine the star operations and the semistar operations on D. Let G be a torsion-free abelian additive group. If G is not discrete, G is called indiscrete. If every non-empty subset S of G which is bounded below has its infimum inf(S) in G, then G is called complete. If G is not complete, G is called incompl...

متن کامل

On pm$^+$ and finite character bi-amalgamation

‎Let $f:Arightarrow B$ and $g:A rightarrow C$ be two ring homomorphisms and let $J$ and $J^{'}$ be two ideals of $B$ and $C$‎, ‎respectively‎, ‎such that $f^{-1}(J)=g^{-1}(J^{'})$‎. ‎The bi-amalgamation of $A$ with $(B,C)$ along $(J,J^{'})$ with respect of $(f,g)$ is the subring of $Btimes C$ given by‎ ‎$Abowtie^{f,g}(J,J^{'})={(f(a)+j,g(a)+j^{'})‎/ ‎a in A‎, ‎(j,j^{'}) in Jtimes J^{'}}.$‎ ‎In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2005

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2004.12.019